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Abstract.
In data mining, finding interesting patterns is a challenging task.

Constraint-based mining is a well-known approach to this, and one
for which constraint programming has been shown to be a well-suited
and generic framework. Constraint dominance programming (CDP)
has been proposed as an extension that can capture an even wider
class of constraint-based mining problems, by allowing us to com-
pare relations between patterns. In this paper we improve CDP with
the ability to specify an incomparability condition. This allows us to
overcome two major shortcomings of CDP: finding dominated so-
lutions that must then be filtered out after search, and unnecessarily
adding dominance blocking constraints between incomparable solu-
tions. We demonstrate the efficacy of our approach by extending the
problem specification language ESSENCE and implementing it in a
solver-independent manner on top of the constraint modelling tool
CONJURE. Our experiments on pattern mining tasks with both a CP
solver and a SAT solver show that using the incomparability condi-
tion during search significantly improves the efficiency of dominance
programming and reduces (and often eliminates entirely) the need for
post-processing to filter dominated solutions.

1 Introduction
Pattern Mining is the process of finding interesting patterns in large
data sets. Common pattern mining tasks include problems like the
well-known problem of frequent itemset mining (FIM) (sets of items
that occur together frequently) from transactional databases. Stan-
dard pattern mining tasks that require enumerating all frequent item-
sets are best performed using specialised tools and algorithms [1,
44, 22]. However, a complete enumeration of all frequent itemsets
is rarely what a user needs, since the number of all frequent itemsets
can be very large. The main goal of pattern mining is to find a smaller
number of interesting patterns for further analysis. Domain-specific
side constraints [9] which restrict the search with more limitations
and methods for compactly representing the outcome of a particu-
lar pattern mining task [36, 40, 41] have been proposed to increase
the utility of constraint-based pattern mining. While these methods
allow us to focus on interesting patterns, and represent solution sets
compactly, they also result in a significantly more computationally
difficult data mining task.

Constraint Programming (CP) [38] is a general purpose method
for specifying decision and optimisation problems in a declarative
language and finding solutions to these problems using highly effi-
cient black-box solvers. Recent work demonstrates the utility of CP
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for performing constraint-based data mining tasks [15, 20, 30, 39,
19]. The main advantage of these methods is their generic nature and
hence flexibility: once a CP model is developed for a certain pattern
mining task, additional side constraints can be introduced without
difficulty. In contrast to specialised algorithms, where incorporating
domain knowledge is often difficult, side constraints often improve
the performance of a black-box constraint solver. Local constraints

language Essence 1.3

letting ITEM be domain int(...)

letting SUPPORT be domain int(...)

given db : mset of set of ITEM
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descending |itemset|

Figure 1: Closed Frequent Itemset Mining in ESSENCE. The domi-
nance relation defines the closedness property between the currently
sought solution and the previous solutions via fromSolution.
The incomparability function is defined on cardinality using a de-
scending order, since closedness is defined by a superset relation.

(or side constraints on a single solution) can be expressed as standard
constraints in a constraint-based mining system. A number of min-
ing tasks require constraints that are not local. The most well-known
example is closed frequent itemset mining (CFIM) with side con-
straints [9], which we will consider in detail in Section 6.1. Enforc-
ing the general property of closedness (and maximality [27]) for fre-
quent itemset mining requires adding constraints among solutions.



In a CFIM task, a frequent itemset is only a solution if its support is
greater than all of its supersets. An itemset’s support is the number
of transaction that contain the itemset as a subset. Consider the fol-
lowing database of transactions for an illustration of the closedness
property.

Example 1.

DB =


T1 = {Bacon, Lettuce, Tomato, Cheese}
T2 = {Bacon, Lettuce, Tomato,Onion}
T3 = {Lettuce, Tomato,Egg, F ish}

In this example, the itemset {Bacon, Lettuce, Tomato} with
the support 2 is a closed frequent itemset and this means all of
its subsets with an equal support value are not closed frequent
itemsets: {Bacon, Lettuce} and {Bacon, Tomato}. In contrast,
{Lettuce, Tomato} is a closed frequent itemset since it has support
3.

Constraint Dominance Programming (CDP) has been suggested as
a way of formulating such properties in a general way [32, 21] such
that they are compatible with other arbitrary constraints. In addition
to the main model where the decision variables and constraints relat-
ing to a single solution are declared in the usual way, a CDP model
specifies constraints among solutions using dominance blocking con-
straints. Every time a solution is found during search, a new blocking
constraint is added. This way, potential solutions that are dominated
by a previously found solution are blocked. Following this semantics,
CDP always finds all non-dominated solutions. However, without a
perfect search ordering the set of solutions can include dominated
solutions. Dominated solutions can then be removed using a post-
processing step [32].

Our approach starts from a specification of a problem class in the
abstract constraint specification language ESSENCE [18], such as the
Closed Frequent Itemset Mining example in Figure 1. An ESSENCE

specification comprises: problem class parameters (given); com-
binatorial objects to be found (find); constraints the objects must
satisfy (such that); identifiers declared (letting); and an op-
tional objective function (min/maximising). The key feature of
the language is support for abstract decision variables, such as mul-
tiset, relation and function, and nested types, such as the multiset of
sets in Figure 1. This makes the language ideally suited to express
data mining problems (Section 4).

In this work, we extend the necessary language and search
components to ESSENCE in line with [21]. Figure 1 lists
the problem specification for closed frequent itemset mining
in ESSENCE (explained in more detail in Section 6.1). Our
novel extension is to support two new kinds of statements
dominanceRelation and incomparabilityFunction,
and a new keyword fromSolution which is only defined when
used as part of a dominance relation statement. On the solver side,
CONJURE [4, 2] generates concrete models from ESSENCE problem
specifications, then SAVILE ROW [34] is used to target a number of
backend solvers. CONJURE and SAVILE ROW are both extended to
support these new statements.

Hence we improve pure CDP [32] with an explicit incomparabil-
ity condition between solutions: in addition to specifying the domi-
nance relation between solutions, we also specify when many solu-
tions are incomparable. Blocking constraints that are generated with
standard-CDP are not useful when finding other incomparable solu-
tions and there can be as many blocking constraints as the number of
solutions. An explicit incomparability specification allows enumerat-
ing all mutually incomparable solutions without generating blocking

constraints after each solution. The blocking constraints are collected
and added at once after all incomparable solutions are enumerated at
a given level.

Contributions. We extend ESSENCE to support CDP. We define
and implement incomparability as an enhancement to standard-CDP
and call it CDP+I. Our proposal overcomes the main bottleneck of
dominance programming in a solver independent manner by generat-
ing many fewer blocking constraints, allowing a natural specification
of the search order, and eliminating the post-processing step which
is often required to filter dominated solutions.

2 Constraint Dominance Problems
A constraint satisfaction problem is a triple (V,D,C) of decision
variables, domains and constraints. A constraint dominance problem
extends a constraint satisfaction problem to a quadruple (V,D,C,R)
by adding a dominance relation R [32]. Dominance blocking con-
straints are generated from an existing solution using a template pro-
vided by the modeller. They are used to prune all solutions dominated
by the solution at hand.

When solving a constraint dominance problem, the goal is to enu-
merate all non-dominated solutions. Semantically, a solution is non-
dominated if the dominance relation statement evaluates to true in
comparison with every other solution. Operationally, this is achieved
by iteratively finding a solution s, posting dominance blocking con-
straints to disallow solutions dominated by s, and using the modified
model to find the next solution [21] (Algorithm 1). This procedure
creates as many dominance blocking constraints as there are solu-
tions and requires one solver call per solution. Moreover, without a
perfect search order it may produce dominated solutions in addition
to all the non-dominated solutions, which a post-processing step is
required to remove.

Definition 1. Solutions A and B are incomparable if neither A dom-
inates B, nor B dominates A.

A significant number of pairs of solutions A and B in the solution
set of a CDP tend to be incomparable with each other. For any pair of
solutions, the dominance blocking constraint generated from either
solution is irrelevant when searching for the other solution. In the
next section we present an explicit way of capturing such conditions
declaratively in a new incomparability function statement.

Algorithm 1 CDP

1: (V,D,C,R)← CDP
2: SAC(V,D,C) . Singleton Arc Consistency preprocessing [16]
3: while True do
4: CSP ← (V,D,C)
5: S ← findSolution(CSP )
6: if S = ∅ then
7: break
8: B ← generateDominance(R,S)
9: C ← C ∪B

3 Dominance and Incomparable solutions
We define a new type of statement to specify incomparable solutions
explicitly. This statement is only valid in a CDP problem specifica-
tion, i.e. one containing a dominance relation statement. The domi-
nance relation statement defines the dominance relation itself, similar



to the dominance blocking constraints introduced in [21]. The in-
comparability function statement provides a function I mapping any
solution to a single value that has an orderable ESSENCE type (typi-
cally an integer). Two solutions A and B such that I(A) = I(B) are
said to be incomparable.

Definition 2. A CDP+I problem specification is a quintuple
(V,D,C,R, I) where R is the dominance relation similar to that
of CDP and I is the incomparability function.

An example of dominance relation and our novel incomparability
function for the closed frequent itemset mining problem can be seen
in Figure 1.

The incomparability function partitions the search space with non-
overlapping parts. Since we enumerate all solutions for each part of
the partition, it necessarily checks the whole search space. However
it is not guaranteed to eliminate non dominated solutions. We present
CDP+I models for five problem classes in this paper, four of these
models have complete incomparability functions whereas one (Rel-
evant Subgroup Discovery) has an incomplete incomparability func-
tion. We discuss these problem classes in more detail in Section 6.

We make use of this explicit incomparability statement by enumer-
ating all solutions that have an equal incomparability function value.
This avoids the need to add any blocking constraints after each solu-
tion that has the same incomparability value. Then, all of the neces-
sary blocking constraints are added at once before moving to the next
incomparability level. This reduces the number of solver calls re-
quired, reduces the total number of dominance blocking constraints
maintained, and allows the usage of efficient solution-enumeration
solvers. In addition, thanks to the explicit search order specified in
the incomparability function statement, we produce fewer (or in the
best case no) dominated solutions. CDP enhanced with an explicit
incomparability statement is implemented in CONJURE and SAVILE

ROW.
Algorithm 2 presents the CDP+I algorithm we propose. In con-

trast to the pure CDP algorithm proposed in [21], which iterates
over the solution set, our algorithm iterates over levels jointly de-
fined. The levels correspond to the set of values that the incompara-
bility function takes. All solutions at a particular level i are known
to be incomparable to each other, and we exploit this by running
the solver to enumerate all solutions at that level. We then generate
one dominance blocking constraint per solution using the template
provided by the modeller in the dominanceRelation statement
of the model. Having access to a set of blocking constraints gener-
ated from the same template presents an opportunity that is unique
to level-wise search. We optionally perform a model reformulation
step provided by SAVILE ROW (line 8) to reduce the size and num-
ber of constraints and to achieve better propagation. In this work we
use the partial evaluator and the common subexpression elimination
methods (Section 5).

Algorithm 2 CDP+I

1: (V,D,C,R, I)← CDP+I
2: SAC(V,D,C)
3: levels← getLevels(I)
4: for l← levels do
5: CSP ← (V,D,C + levelRestriction(l))
6: S ← findAllSolutions(CSP )
7: B ← generateDominance(R,S)
8: B ← reformulate(B) . Optional
9: C ← C ∪B

4 Extending the language: ESSENCE

ESSENCE is unique in the abstract modelling features it provides,
such as complex domains (sets, multisets, sequences, etc) and quan-
tification over decision variables [18]. A transactional dataset of
items can be represented as a multiset of sets of integers in ESSENCE

if the ordering of the items in a transaction does not matter (and a
multiset of sequences if the ordering does matter). If any additional
information is required, complex nested types of sets of records can
be used to represent the data naturally. For example, in closed dis-
criminative itemset mining (Section 6.4) and relevant subgroup dis-
covery problems (Section 6.5), we use a multiset of records (con-
taining a set of integers as the itemset and a Boolean as the class
identifier) to represent the transactions.

In this work, we extend ESSENCE with a small number of
necessary language features to allow the natural specification of
CDP. We add a dominanceRelation statement which con-
tains a template for the dominance blocking constraints to be
posted with respect to other solutions of the problem instance. In-
side the dominanceRelation statement, a newly introduced
fromSolution keyword is used to refer to values coming from
other solutions of the problem instance. Operationally in [21] a so-
lution is tested only against solutions found up to that point in
search. A solution is tested against other solutions found after it
in a post-processing phase. We also extend ESSENCE to add an
incomparabilityFunction statement, which allows the mod-
eller to specify the incomparability condition.

5 Extending the compiler: CONJURE

Standard ESSENCE problem specifications are refined into solver-
independent constraint models in ESSENCE PRIME by CONJURE

[4]. CONJURE selects representations (in terms of Booleans, inte-
gers and arrays) for decision variables and problem parameters, and
translates problem constraints to operate on the chosen representa-
tions. For sets, CONJURE has two main representation options. First
is the Occurrence representation, which uses a Boolean array indexed
by potential members of the set. In this representation a true en-
try represents set membership of the corresponding index. Second is
the Explicit representation, which uses an array of values together
with a marker variable to represent the set cardinality. Array entries
up to the marker variable are considered to be members of the set.
CONJURE automatically generates the necessary symmetry breaking
constraints to ensure a 1-1 correspondence between the assignments
to the original set and the chosen array representation [3]. In this
work, we will not explore the effect of different set representations
on performance, instead we rely on the Compact heuristic built into
CONJURE [2].

The bodies of both the dominance relation and incomparability
function statements are valid ESSENCE and therefore can be refined
using the existing CONJURE infrastructure.

SAVILE ROW takes constraint models written in the ESSENCE

PRIME language and translates them to a backend solver, MINION

or SAT. It employs a number of reformulations to improve the model
for the target solver. In this work we exploit two powerful reformu-
lations performed by SAVILE ROW: common subexpression elimi-
nation (CSE) and domain filtering using singleton arc consistency
(SAC) [33, 16]. CSE is useful particularly when applied to the dom-
inance blocking constraints in CDP+I. SAC is useful in reducing the
number of levels in CDP+I and hence reducing the number of solver
calls.



When encoding to SAT, we use the standard encodings provided
by SAVILE ROW: direct encoding and order encoding depending on
the constraint expression [34]. We use the constraint programming
solver MINION for domain filtering via SAC when targeting a SAT
solver as well.

CDP Algorithm 1 is implemented in SAVILE ROW with minor
modifications. In SAVILE ROW, the input CSP is represented using
a model object. We define a new sub-model object for implementing
CDP which is instantiated for each level with mutable reference to
the main model’s variables, domains and constants. The sub-model
does not refer to the original problem constraints. After every solu-
tion a new sub-model is created with the corresponding dominance
blocking constraints and then these are appended to the main model.

CDP+I Algorithm 2 is implemented in a similar fashion. Here,
at each step we enumerate all solutions. The CP solver we use
(MINION) supports finding a single solution as well as enumer-
ating all solutions natively. For SAT, we use a fast SAT solver
in the context of CDP (glucose [5]) and a non-blocking All-
SAT solver (nbc minisat all [42]) in the context of CDP+I.
nbc minisat all is much faster in enumerating solutions than
repeated calls to a standard SAT solver since it is specifically crafted
for this purpose using a non-blocking jumping mechanism.

SAVILE ROW is capable of translating solutions back from
SAT/MINION automatically into ESSENCE PRIME. For each solu-
tion, dominance blocking constraints are generated. For CDP+I, we
apply CSE on the set of dominance blocking constraints. Eliminat-
ing common sub-expressions has been shown to be a very effective
model reformulation in previous work [35] and having a set of sim-
ilar constraints presents a natural opportunity for them to arise. We
demonstrate the effect of applying CSE on a part of an instance on
the hepatitis dataset from our experiments.

Example 2.

((is29 ∨ is37 ∨ is55 ∨ is56 ∨ is58 ∨ is60 ∨ is62 ∨ (76 < sup))

∧
(is29 ∨ is37 ∨ is53 ∨ is55 ∨ is56 ∨ is58 ∨ is60 ∨ (80 < sup)))

 

(aux = is37 ∨ is55 ∨ is56 ∨ is58 ∨ is60

∧
(aux ∨ is62 ∨ (76 < sup)) ∧ (aux ∨ is37 ∨ (80 < sup)))

In this example a disjunction with 5 literals is common to two
dominance blocking constraints. It is extracted by the CSE algorithm
by introducing an auxiliary Boolean decision variable. In larger ex-
amples, we typically identify many more common subexpressions.

6 Problem classes
All models operate on a transactional dataset in the form of a multi-
set of set of items. The relevant subgroup discovery problem requires
identifying which itemsets cover the pattern, and for this problem
class we use a sequence instead of a multi-set as sequences allow
positional indexing whereas multi-sets do not. The decision variables
are also similar for each model; we always try to find a set of items
to represent the pattern and its supports (using integers) or its cover
(using a set of transaction ids).

We use two side constraints on the pattern for each model; mini-
mum value [20] and maximum cost [9, 10]. Moreover, the minimum
value constraint is monotone and the maximum cost constraint is not

monotone; the latter cannot be straightforwardly combined with the
local formulation of the close itemset mining, as a semantically non-
meaningful set of solution will be returned. Hence we demonstrate
the correct handling of side constraints independent of whether they
are monotone or not.

In the representation of the models, we use is to denote the deci-
sion variable itemset and s() is used to access support. Additionally
prev() has been used to indicate previous solution’s decision vari-
ables which is equivalent to fromSolution in ESSENCE syntax.

6.1 Closed Frequent Itemset Mining (CFIM)

Frequent itemset mining is a standard data mining problem where the
task is enumerating itemsets whose support is above a given thresh-
old value.

Closedness is a condition for the whole solution set of an frequent
itemset mining task. Itemsets are called closed if and only if their
support is greater than all of their supersets. CFIM also acts as a loss-
less way of compressing the solution set of FIM, since all frequent
itemsets can easily be enumerated once the closed frequent itemsets
are found [36].

Definition 3. The dominance relation of closedness is: (is ⊆
prev(is)) =⇒ (s(is) 6= prev(s(is))).

Maximal frequent itemset mining is a slightly simplified version
of this problem class which indicates no subset of any solution is
allowed. It can be supported within the dominance framework with
minimal changes, namely by removing the support condition in the
dominance relation (i.e ¬(is ⊆ prev(is))).

We use the cardinality of the itemset is |is| as the incomparability
function since two itemsets with the same cardinality cannot domi-
nate each other. This is because in the dominance relation, the left
hand side of the implication is a subset operator. Itemsets with the
same cardinality cannot be subsets of each other unless they are the
same set (which is also not possible either since we enumerate each
solution once). Descending order for subset operator is correct order
to avoid dominated solutions.

6.2 Generator Itemset Mining

Generator itemsets (also called free itemsets or key itemsets [12, 11])
are a related compressed representation of all frequent itemsets. A
generator itemset is a frequent itemset which does not have any fre-
quent subsets with the same support.

Generator itemsets are useful as part of a larger association rule
mining task, together with closed frequent itemsets to find minimal
non-redundant association rules [29].

Definition 4. The dominance relation (prev(is) ⊆ is) =⇒
(s(is) 6= prev(s(is))) follows the definition very closely. A frequent
itemset is a generator itemset if its support is not equal to the support
of any of its subsets.

The incomparability function for generator itemsets is almost the
same as for closed itemsets: it uses the itemset cardinality. This con-
dition is complete when paired with an ascending direction of search
on the itemset cardinality. In contrast to CFIM, smaller itemsets dom-
inate larger ones by definition since they do not have any frequent
subsets. Then, dominance blocking constraints are added and we
only find generator itemsets in ascending order.



6.3 Minimal Rare Itemset Mining

A minimal rare itemset is an infrequent itemset whose subsets are all
frequent. They are closely related to maximal, closed and generator
itemsets. Minimal rare itemset mining is useful for dense datasets
where the number of frequent itemsets may be very large [41]. In
this paper we constrain the support of an itemset to be less than a
given frequency threshold, so a maximum frequency constraint, and
greater than a given epsilon value.

Definition 5. The dominance relation follows from the definition of
minimal rare itemsets: an itemset is a solution if none of its subsets
are solutions: ¬(prev(is) ⊆ is)

The incomparability function uses set cardinality as well. It is
complete when the search order is ascending on the itemset cardi-
nality, since we first find small itemsets which cannot have any infre-
quent subsets. Then, dominance blocking constraints are added and
we only find minimal rare itemsets in the successive levels.

6.4 Closed Discriminative Itemset Mining

Discriminative itemset mining operates on a slightly different
dataset: in addition to transactions, each entry has an associated class
label (positive/negative). We calculate two support values for a dis-
criminative itemset, the support among positive labeled itemsets, and
the support among the negatives. A discriminative itemset is one
where the difference between the positive support and the negative
support is greater than a frequency threshold [14]. In closed discrim-
inative itemset mining we add an additional closedness condition.

In order to represent the dataset, we use a multi-set of records in
ESSENCE. Each record contains the transaction and the class rather
than only the transaction.

Definition 6. After calculating the positive and negative support
of the itemset with limiting constraints, we can apply the closure
dominance on positive cover as follows: (is ⊆ prev(is)) =⇒
(s+(is) > prev(s+(is)) , where s+() is used to access the posi-
tive support.

6.5 Relevant Subgroup Discovery

Relevant subgroup discovery is related to discriminative itemset min-
ing. While discriminative itemset mining reasons on the support
numbers of different classes of transactions, relevant subgroup dis-
covery reasons using the actual sets of transactions that provide the
support [31, 32]. A relevant subgroup X is an itemset such that at
least one of following conditions hold; 1) For positive transactions,
no other itemset covers a superset of the transactions covered by X ,
2) For negative transactions, no other itemset covers a subset of the
transactions covered by X or 3) For both kinds of transactions, no
other itemset that has the same total cover is a superset of X .

We represent the dataset for this model, using a sequence of
records instead of the multi-set that we had in discriminative itemset
mining. This is to allow us to store references to transactions using
their index in the sequence.

The decision variables are modified accordingly to encode the
transaction identifiers instead of just the total number of transactions
that provide the support. We post the following constraints to calcu-
late the cover sets and enforce the minimum support condition on the
positive transactions.

Definition 7. The dominance relation for relevant subgroup discov-
ery is more complex, but it follows the definition given above.

¬(c+(is) ⊆ prev(c+(is))) ∨ ¬(prev(c−(is)) ⊆ c−(is))

∨ ¬((c+(is) ∪ c−(is) = prev(c+(is))

∪ prev(c−(is))) =⇒ is ⊆ prev(is))

Here, c+ and c− is used for positive and negative cover on trans-
actions.

For the incomparability function, the descending order on the car-
dinality of the itemset can be applied. This incomparability function
is not complete though: some dominated solutions may be found
when using it. Even though it is not complete, it helps CDP+I in
solution performance because it still eliminates a large number of
dominated solutions.

Example 3.

DB =


T1 = {1, 2, 3, 4}, Class1 = 1

T2 = {1, 2, 3, 4}, Class2 = 1

T3 = {1, 2, 3, 5}, Class3 = 1

An example follows to demonstrate that the cardinality is not
complete for incomparability. The itemset {1, 2} dominates {3, 4}
because the positive cover of the former includes all transactions
whereas the positive cover of the latter only includes the first two.
This violates the first component of the dominance relation given
above.

7 Empirical analysis

In our experiments, we use 12 transactional datasets from the CP4IM
website3. They are derived from UCI datasets, meant to be used for
constraint-based itemset mining.

We included a minimum value and a maximum cost side con-
straints in all of our models to demonstrate their ability to handle
arbitrary side constraints. Due to the inclusion of side constraints,
specialised data mining algorithms are applicable on these tasks. We
generate values between 0 and 5 for item values and costs using uni-
form randomness. In addition, we generate a threshold for the min-
imum value and the maximum cost constraints as well. We system-
atically generate several candidate instances and choose instances
which have a reasonable number of solutions (in the order 10,000
at most for all problem classes except minimal rare itemset mining
and in the order of 100,000 for minimal rare) and those that can be
solved within our time limit of 6 hours4. We generate instances at 5
frequency levels: 10%, 20%, 30%, 40%, 50%. For CFIM we use the
instances published in the appendix of [26].

For each problem class, we solve each instance using 4 pairs of
solver configurations. The first two configurations are for standard
CDP with the default search order provided by the solver, one with
a CP solver (MINION) and one with a SAT solver (glucose). The
second two configurations are for CDP with the search order speci-
fied in the incomparability function statement. The third two config-
urations are for CDP+I CP/SAT and the last two are for CDP+I with
reformulation enabled. We use a CP solver (MINION) and an AllSAT
solver (nbc minisat all) for CDP+I configurations.

3 https://dtai.cs.kuleuven.be/CP4IM/datasets/
4 Our Github repository of the data and results is available at https://github.

com/stacs-cp/ECAI2020-CDP [28]

https://dtai.cs.kuleuven.be/CP4IM/datasets/
https://github.com/stacs-cp/ECAI2020-CDP
https://github.com/stacs-cp/ECAI2020-CDP
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Figure 2: Solver time for all instances, sorted by SAT CDP+I. Timeouts are also shown on the top of the plot.

We run every SAT instance 3 times with different seeds and
present averages. We run MINION instances only once with a de-
terministic static search ordering.

We run our experiments on two identical 32 core AMD Opteron
6272 machines, at 2.1 GHz and with 256GB memory. We run 31
cores in parallel on each machine and left one core idle to account
for system processes. Each separate experiment was given a single
CPU core, 8GB of memory and a 6-hours time limit using cgroups.
Total time to run all the experiments was roughly 3 CPU years.

7.1 Results

The experiments are conducted in a way to examine and explain the
following:

• Impact of adding a level-wise search order to CDP
(CDP-default-order vs CDP-level-order, see Figure 3a)

• Impact of CDP+I in general with respect to standard CDP
(CDP-level-order vs CDP+I, see Figure 3b)

• Impact of model reformulations in CDP+I (CDP+I vs CDP+I with
model reformulation, see Figure 3c)

• Comparison of the solving methodology on CDP-level-order and
CDP+I (MINION vs SAT, see Figure 3d)

For a general picture, Figure 2 shows the time spent solving all
instances of the five problem classes using the 8 configurations. The
results are sorted by time spent by SAT CDP+I without reformula-
tion. The timed out instances are also included at the 6-hour mark
near the top of the plot. The results show that CDP+I configurations
are significantly better than CDP configurations on most instances.
While SAT CDP+I configurations require the least time in the major-
ity of the cases, for a small number of instances the SAT CDP con-
figuration is the fastest; these instances have a very small number of
levels of solutions. For a small number of instances Minion CDP+I is
the best configuration; these instances contain large amounts of data
and the size of the SAT encoding gets prohibitively large.

The optional model reformulation brings a negligible overhead on
most instances and on some instances it helps significantly.

For a small number of instances the default search order performs
better for SAT; these instances have a very small number of solutions

all of which are non-dominated. In these cases the small overhead of
applying a specific search order does not pay off.

Effect of CDP order Figure 3a presents a comparison plot be-
tween two different CDP configurations with MINION and SAT. On
easy instances, level ordering creates an overhead. However, for dif-
ficult instances using the same search order defined in the incompa-
rability function helps. CDP-level-order solves many more instances
than CDP-default order where a large number of instances time out.

CDP vs CDP+I Figure 3b presents a comparison plot between
CDP-level-order and CDP+I on the same instances, using both MIN-
ION and SAT. We only compare against CDP-level-order since it
performs better than CDP-default order in general. This plot shows
the direct effect of using a level-wise search and adding the dom-
inance blocking constraints in batches. A point above the diagonal
line means CDP+I performs better, which is a significant majority
of the instances. Both solving methodologies clearly benefit from
CDP+I thanks to typically fewer solver calls (once per level as op-
posed to once per solution) and retaining learned clauses for SAT.

Effect of reformulation on CDP+I Figure 3c presents a com-
parison plot between two different CDP+I configurations for MIN-
ION and SAT: with and without the optional model reformulation.
The results show that the reformulation does not consistently help
solving time. The reformulation hurts the performance of the CP
solver MINION more. However, the performance of the SAT solver
nbc minisat all up to median difficulty is improved. For the
most difficult instances, the reformulation has mixed effects. The
auxiliary variables added by CSE create a connection between the
dominance blocking constraints and this can help propagation only
for a subset of the instances. When the help is not significant enough,
they create an unnecesary overhead.

MINION vs SAT Figure 3d presents a comparison plot between
MINION and SAT for CDP and CDP+I. We use CDP-level-order and
CDP+I without reformulations in this plot. SAT performs better for
most instances and it benefits from using incomparability more. This
is likely to be due to the learning employed by SAT solvers. In con-
trast, MINION is not a learning solver.

In Table 1 we focus on the five problem classes separately to see
the effect of the complexity of the dominance relation. Results show
that SAT is always significantly better for all problem classes except
the Relevant Subgroup Discovery problem where the complexity of
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Figure 3: Comparing the eight configurations. All plots present solver times (in seconds) with a 6-hour timeout. Timed out instances are near
the top and the right borders.

dominance relation is the highest.

Problem CP wins SAT wins Similar time
Closed 0 40 18
Generator 0 36 17
Minimal 0 17 13
Discriminating 0 18 14
Relevant 5 19 19

Table 1: Solver time comparison on CP vs SAT on CDP+I. Sub-
stantial differences (> 50s) are reported as wins. Similar time indi-
cates the CP and the SAT solver reached the solutions approximately
around the same time (±50 seconds).

Number of solver calls CDP variants perform better than CDP+I
equivalents for 25 instances. All of these instances have a shared
characteristic: they have a small number of solutions (less than 10,
which is smaller than the number of levels). In the extreme case of
instances with significantly fewer solutions than levels using CDP+I
has a large overhead. In these cases the cost of making one solver
call per solution becomes negligible.

8 Related work

Our novel system is inspired by level-wise search [13, 8], the domi-
nant form of search in early pattern mining work while being inside
a general CP-modelling environment in a purely declarative fashion.

There is significant related work on specialised SAT encodings
for itemset mining problems [24, 25], maximal itemset mining with
side constraints [23] and work on global constraints for itemset min-
ing problems [30, 39, 6]. These can be fruitfully integrated into our
framework to improve the performance of CDP and CDP+I even fur-
ther. Using the standard constraint formulations and encodings pro-
duced by CONJURE and SAVILE ROW was fair in our work to eval-
uate the effect of CDP+I, since we use the same encodings for both
CDP and CDP+I. They are both likely to benefit from improved en-
codings in similar ways.

Model reformulations in constraint programming and SAT have
been shown to be effective ways of increasing solution perfor-
mance [34]. We use the CSE algorithm found in SAVILE ROW in
this work. For general CNF formulas, finding an equivalent CNF for-
mula that is minimal in the number of literals is NP-hard [43]. There
are cheaper alternative methods of reducing the size of CNF formu-
las [17]. Exploring other ways of reformulation and compressing CP
models and SAT encodings is possible thanks to the batch addition
of the dominance blocking constraints.

In the context of itemset mining, finding undominated solutions
under constraints is proven to be coNP-Hard [7] which eliminates
one-shot CSP approaches and justifies the usage of CDP.

Skypatterns is another problem class that can be specified us-
ing dominance relations [37]. This problem class can be straightfor-
wardly modelled in ESSENCE using our CDP extensions.

MiningZinc [20, 19] is a declarative framework for specifying data
mining problems on top of the solver independent CP modelling lan-
guage MiniZinc. Dominance programming features (including in-
comparability) can be implemented on top of MiningZinc as well
to benefit from similar performance gains. However, the representa-
tions of the nested sets, multisets and sequences available natively
in ESSENCE are not available in MiningZinc and would have to be
implemented.

9 Conclusion
In this paper we extended the high-level problem specification lan-
guage ESSENCE to support dominance programming features. In ad-
dition, we introduced a novel incompatibility function statement,
which allows the modeller to specify a condition that can be used
to identify incomparable solutions. We demonstrated significant per-
formance gains thanks to the combined CDP+I framework. CDP+I
produces a drastically reduced number of dominated solutions and
requires fewer solver calls for difficult problems. Equipped with
CDP+I capabilities, ESSENCE becomes a particularly suitable lan-
guage for specifying and solving constraint-based itemset mining
problems that both contain problem specific side constraints and con-
straints among solutions (such as closedness). The implementation is
solver independent thanks to CONJURE, SAVILE ROW and our addi-
tional effort. Furthermore, we have shown that we can apply CDP+I
to a wider range of mining tasks beyond itemsets, such as relevant
subgroup discovery.

In the CDP+I algorithm, a set of dominance blocking constraints
are collected within an incomparability level and are added as a sin-
gle batch. This allows us to evaluate the effect of model reformula-
tion on the dominance blocking constraints before they are added to
the model, which is uniquely possible thanks to the level-wise search.

Future work includes the application of CDP+I to a wider range of
problem classes, both in data mining and beyond. We believe multi-
objective optimisation problems will be a natural next application
area for CDP+I. Other possible model reformulation mechanisms
can be examined. Specifically for the SAT backend, techniques to
find shorter and/or more efficient CNF formulas can be applied to
improve efficiency of the CDP+I framework even further.
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